
Executing Aspect-Oriented Component-Based
Software Architectures on .NET Technology

Jennifer Pérez, Nour Ali, Cristóbal Costa, Jose A. Carsí, Isidro Ramos

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera s/n
 46022, Valencia, Spain

{jeperez | nourali | ccosta | pcarsi | iramos} @dsic.upv.es
ABSTRACT

Component-Based Software Development (CBDS) and Aspect-Oriented Software Development (AOSD) have
emerged in the last few years as new paradigms of software development. Both approaches provide techniques
to improve the structure and reusability of the code. In addition, Aspect-Oriented Programming (AOP) permits
the reduction of the maintainability and development costs of the final code by means of the separation of
concerns in aspects. However, the .NET framework does not provide support for the Aspect-Oriented approach.
In this paper, we present a solution for this lack found in .NET technology by means of a .NET middleware
called PRISMANET. PRISMANET is based on the PRISMA approach, which integrates the advantages of
AOSD and CBDS and supports dynamic reconfiguration of software architectures at run-time. This middleware
has been completely developed using the .NET framework and has been tested with real case studies, such as the
Teach Mover Robot. As a result, PRISMANET extends the .NET technology by the execution of aspects on the
.NET platform, the reconfiguration of software architectures (local and distributed) and the addition and removal
of aspects from components at run-time.

Keywords
Aspect-Oriented Programming (AOP), Component-Based Software Development (CBDS), dynamic
reconfiguration of software architectures, addition and removal of aspects at run-time, concurrency, distribution,
mobility.

1. INTRODUCTION
Complex structures, non-functional requirements,
reusability and run-time evolution are leading
properties that current software systems need to
deal with. Two software development approaches
have emerged to respond to these needs:
Component-Based Software Development (CBSD)
[Szy98] and Aspect-Oriented Software
Development (AOSD) [AOS05]
On the one hand, CBSD decomposes the system
into reusable entities called components that
provide services to the rest of the system.

On the other hand, AOSD allows for the separation
of concerns by modularizing crosscutting concerns
into a separate entity, called aspect. The
encapsulation of the aspect allows for the
reusability of the same aspect in different objects
and the evolution of an aspect without affecting the
rest of objects and aspects. The main effort in this
approach has been made at the implementation
level. As a result, this approach has emerged as a
new paradigm of software development. However,
the .NET framework does not provide support for
this new approach, making the use of .NET
technology by the “Aspect-Oriented Community”
unfeasible.
In this paper, we present a solution that provides
support to the AOSD by means of the
PRISMANET middleware. PRISMANET
implements PRISMA. PRISMA is an approach to
develop complex information systems that provides
a model and an Architecture Description Language
(ADL).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

PRISMA COMPILERPRISMA COMPILER
Implementation

patterns
Implementation

patterns

PRISMA
XML

PRISMA
XML

.NET FRAMEWORK

?PRISMANET

.NET Source Code.NET Source Code

Figure 1. PRISMA approach

The PRISMA model defines software architectures
by integrating AOSD and CBSD. In addition,
PRISMA supports evolution by means of a meta-
level. Its meta-level allows the evolution of types
and the dynamic reconfiguration of architectures.
The PRISMANET includes the PRISMA model, its
meta-level and the distribution support for mobility.
PRISMANET not only extends the .NET technology
by the incorporation of aspects, but it also provides
the reconfiguration of software architectures (local
and distributed) and the addition and removal of
aspects from components at run-time. These complex
features have been successfully implemented thanks
to the mechanisms that the .NET technology
provides to deal with them. The most important .NET
technology mechanisms [Rob03] that we have used
are: delegates, reflection, serialization, .NET
Remoting [Mic05] and dynamic code generation.

As a result of the PRISMANET implementation,
PRISMA software architectures can be developed
and can be executed on the .NET platform. In
addition, PRISMANET allows .NET programmers to
develop applications with aspect-oriented, mobility
and dynamic evolution properties.

Currently, the PRISMA approach allows the
development of software systems with all its
advantages by extending PRISMANET classes. The
middleware has been developed and tested with real
case studies, such as the TeachMover robot [Tea05]
and the EFTCOR teleoperation system [EFT02] to
clean the hulls of the ships. As a result of this work,
we are able to move the robot with the Aspect-
Oriented .NET technology and to develop the
PRISMA CASE model compiler based on the
middleware. For this reason, we are currently
developing the compiler in order to automatically

generate C# code from graphical diagrams (see
Figure 1).

The goal of this paper is to show how the aspect-
oriented, mobility and run-time evolution properties
of PRISMANET have been implemented using the
.NET technology mechanisms that have been
previously mentioned.
The structure of the paper is as follows: Section 2
briefly introduces the basic concepts of the
PRISMA model to understand the middleware
implementation. Section 3 explains the
PRISMANET middleware implementation in detail:
aspects and components, concurrency, mobility and
run-time evolution. Section 4 presents a comparison
with other approaches that introduce aspect-oriented
programming in .NET technology and points to the
disadvantages that PRISMA overcomes. Finally,
conclusions and further work are presented in
section 5.

2. PRISMA
The PRISMA model allows for the definition of
architectures of complex software systems [Per03].
Its main contributions are the integration of the
AOSD and the CBSD and its reflexive properties. In
this way, it specifies different characteristics
(distribution, safety, coordination, etc.) of an
architectural element (component, connector) using
aspects, and it is able to evolve its architectures by
means of a meta-level.
A component is an architectural element that
captures the functionality of the system and does not
act as a coordinator among other elements. However,
a connector is an architectural element that acts as a
coordinator among components. In the PRISMA
model, the connector does not have the references of
the components that it connects to and vice versa. In

this way, both components and connectors are
reusable. The channels between two connected
architectural elements have their references. The
channels that connect components and connectors are
called attachments.
Architectural elements can be seen from two
different views, internal (white box view) and
external (black box view). The white box view shows
an architectural element as a prism being an aspect of
this architectural element each side of the prism (see
Figure 2); whereas, the black box view encapsulates
its functionality and publishes a set of services that
offers to other architectural elements (see Figure 3).

Figure 2. White box view of a component

A PRISMA aspect represents a specific concern
(safety, coordination, distribution, etc) that crosscuts
the software architecture. This means that those
concerns that do not crosscut the architecture are not
going to be an aspect. In order to avoid these
crosscutting-concerns, a PRISMA architectural
element is formed by a set of aspects that describe it
from the different concerns of the architecture. The
kinds of aspect (safety, coordination, distribution,
etc) that form an architectural element depend on the
concerns of the information system that is being
specifying.The main elements that form an aspect are
the following:
• Attributes: store information about the

characteristics of the aspect.
• Valuations: specify the changes in attribute values

by the execution of a service.
• Services: offer functionality of a specific concern.
• Protocols: describe the order and the state in which

a service could be executed.
A component is formed by a set of aspects
(functional, distribution, etc.), their synchronization
relationships (aspects weaving) and one or more
ports. These ports represent the interaction points
among components. The type of ports is an interface
that publishes a set of services.

Figure 3. Black box view of a component

The weaving is the glue of the aspects forming a
prism. The weaving determines how an aspect is

connected (synchronized) with the rest of the aspects.
It indicates that the execution of an aspect service
can generate the invocation of services in other
aspects. However, to preserve the independence of
the aspect specification from the aspect weaving, the
weaving is specified outside the aspect and inside the
component.

The weaving methods are operations that describe
the causality of the weaving services. The weaving
methods are commonly used in the AOP. They are as
follows:
• after: aspect1.service is executed after

aspect2.service
• before: aspect1.service is executed before

aspect2.service
• instead: aspect1.service is executed in place of

aspect2.service

3. .NET MIDDLEWARE
PRISMA ADL (Architecture Description Language)
is a specification language independent of the
development platform. For this reason, an abstract
middleware that sits above the .NET platform has
been developed to implement .NET PRISMA
applications. This middleware is called
PRISMANET, and its implementation has been
carried out in C# language using the standard
techniques that the .NET framework provides, that is,
without extending the development platform. As a
result, PRISMANET can be executed in the .NET
platform without having to do anything else other
than starting the execution of the middleware.
PRISMANET offers the extra functionalities and
characteristics which .NET does not directly provide.
It allows for the execution of aspects, the
reconfiguration of software architectures (local and
distributed), the load of components, the creation of
execution threads, the management of the local
components, the addition and removal of aspects
from components at run-time, the mobility and
replication, etc.

PRISMANET architecture

The PRISMANET architecture is constituted by two
modules: server and framework (see Figure 4):
• PRISMA Server: This module provides services

to manage, move, maintain and evolve
components.

• PRISMA Framework: This module is the user
interface that offers the user the available services
of the Server module. In addition, the state
messages of the middleware are displayed on this
user interface.

Figure 4. PRISMA Middleware

As PRISMA specifies software architectures of
distributed systems, distribution needs has also been
taken into account in the development of the
middleware. PRISMANET has to run on each node
where a PRISMA application needs to be executed
(see Figure 5). Each middleware manages the
architectural elements instances that are being
executed in its specific node, providing the necessary
distribution, mobility, maintenance and evolution
services to the instances. In order to keep the
consistence of distributed software architectures and
to make the instances work as if they were local
instances, each middleware is able to interchange
information with the other middlewares of the
different nodes of a software architecture.

«TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP» «TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP» «TCP/IP»

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

Figure 5. PRISMA Middleware running in

distributed nodes

There are three kinds of communications concerning
PRISMANET and the applications that run on it:
• Calls from the components to the middleware to

ask for mobility and replication services.
• Communication among different components as a

result of the execution of the application.
• Communication among different middlewares to

find out locations of components, to move
components, to evolve the architectures, etc.

PRISMA Model Implementation
Each concept defined in the PRISMA model has
been implemented in the Server module of the
PRISMANET. In this section, we focus on the
aspects and components. The implementation has
been carried out preserving the following features:

• The run-time evolution of applications must be
possible. As a result, the dynamic code generation
to add and remove aspects, components, connectors
and attachments must be allowed.

• The implementation has to be as close as possible
to the model in order to facilitate the future
automatic code generation.

• The execution of attachments, connectors and
components must be concurrent. In addition, the
concurrency among the different aspects that form
a component must be preserved.

3.2.1. Aspects
An aspect has been implemented as a C# class called
AspectBase of the PRISMANET. This class stores
the name of the aspect and its thread reference.

Figure 6. AspectBase class of PRISMANET

middleware1

1 The set of classes that appear in the figure have been

automatically generated from the source code of
PRISMANET using the Sparx tool
http://www.sparxsystems.com/

The AspectBase class has the references of the
component and the middleware that it belongs to in
order to request them services. In addition, as the
middleware must guarantee the execution of services
without blocking the requesters, when a service of an
aspect requires its execution while another service is
being processed, the aspect stores the service that can
not be immediately attended in a queue. As a result,
the aspect thread is continuously processing the
requests of the queue (see Figure 6). Finally, it is
important to emphasize that the AspectBase class
offers three services: startAspect to start the
execution of the aspect thread, stopAspect to stop the
execution of the aspect thread and abortAspect to
definitively stop the execution of the aspect thread.

The kinds of aspects that can be defined in the
PRISMA model are unlimited. However, each one
has the functionality described above. For this
reason, they are a subclass of the AspectBase class
and inherit this functionality (see Figure 7).

Figure 7. Classes of several kinds of aspects1

As a result, PRISMANET allows the implementation
of a specific aspect by creating a C# class that
inherits from one of the classes that represent one
kind of aspect. It is important to keep in mind that
aspects must be serializable in order to enable the
mobility of aspects in distributed architectures.

In a specific aspect, the PRISMA attributes are
implemented as private variables. The PRISMA
services are programmed as private methods that
implement their respective valuations. They also
check whether their execution is enabled in
accordance with the established order of the
protocol. An example of a specific safety aspect is
presented below:
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Middleware;
using PRISMA.Attachments;

namespace Robot
[Serializable]
public class SMotion : SafetyAspect
{
 #region Definition of PRISMA Variables
 double minimun;
 double maximun;
 #endregion
 public SMotion(double initialMinimum,
 double initialMaximum) :
 base("Smotion")…
 public AsyncResult Check(double newAngle,
 out bool secure)…
}

Finally, it is important to emphasize that specific
aspects are packaged in an assembly in order to
facilitate their distribution over the network and their
integration in a library.

3.2.2. Components
A component has been implemented as a C# class
called ComponentBase of the PRISMANET. This
class stores the name of the component, its own
thread reference and its middleware reference and the
dynamic list of aspects. It stores two attributes to
control whether the component is going to stop or
move, as well as the references to the ports to be able
to receive and request services. In addition, the
ComponentBase class offers the following services:
Start to initiate the component thread execution; Stop
to stop temporarily the component thread execution;
Abort to stop definitively the component thread
execution; IsWeaved to query if an aspect of the
component is weaved with another aspect;
AddAspect and RemoveAspect to add and remove
aspects from a component; and AddWeaving and
RemoveWeaving to add and remove weavings from a
component (see Figure 8).

Figure 8. ComponentBase class of PRISMANET

middleware1

3.2.3. Weavings
Weavings have been implemented as a dynamic
linked list with three levels of depth. This list is part
of the component that it belongs to. Thus, this
weaving implementation facilitates the management
and evolution of the weavings. The dynamic list is
implemented by the WeavingsCollection C# class.
Each element of this dynamic list is an instance of
the AspectTypeNode C# class that contains the aspect
type and another dynamic list called
weavingAspectList. Each element of the
WeavingAspectList is an instance of the
WeavingNode C# class. This class stores the service
name, which triggers the weaving execution as well
as, a delegate of this service for its dynamic
invocation. It also stores three more lists, each of
which belongs to a weaving operator (after, before,
instead). These lists contain instances of the
WeavingMethod C# class. This class stores the
delegate, which points to the method that must be
executed as a result of the weaving
(methodDelegate). It also stores the method that has
triggered the weaving execution (origMethod), and
the weaving type (see Figure 9).

Figure 9. Dynamic list of weavings1

As a result, PRISMANET allows the implementation
of a specific component by creating a C# class that
inherits from the ComponentBase class. It is
important to keep in mind that components must be
serializable in order to enable the mobility of
components in distributed architectures. An example
of a component called Actuator is presented below:

using System;
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace Robot
{
[Serializable]
 public class Actuator : ComponentBase
 {
 public Actuator(string name,
 MiddlewareSystem middlewareSystem) : base
 (name,middlewareSystem)
 {
 /* ***************************
 * * DEFINITION OF ASPECTS * *
 *****************************/
 // Creation of Functional Aspect
 AddAspect(new FActuator());
 // Creation of Safety Aspect
 AddAspect(new SMotion(initalMinimum,
 initialMaximum));

 // Achieving the references of the aspects
 IAspect functionalAspect =
 GetAspect(typeof(FunctionalAspect));
 IAspect safetyAspect =
 GetAspect(typeof(SafetyAspect));

 /* *****************************
 * DEFINITION OF WEAVINGS * *
 *******************************/
 // Weaving MoveJoint
 AddWeaving(functionalAspect,"MoveJoint",
 WeavingType.AFTERIF("secure",true),
 safetyAspect,"Check",functions);

 /* ***************************
 * * DEFINITION OF PORTS * *
 *****************************/
 InPorts.Add("IMotionJointPort",
 "IMotionJoint",
 functionalAspect);

 OutPorts.Add("IMotionJointPort",
 "IMotionJoint");}}}

Execution Model
When the execution of a service is requested from a
component, the request comes from the port that
publishes the service (step 1, Figure 10). The port
sends the request to the queue of the component (step
2, Figure 10). Once the component thread extracts
the requested service from the queue, the component
checks if the requested service has weavings
associated to it (step 3, Figure 10). If the service does
not have any weavings, its delegate is
asynchronously executed so that the component can
process another request from the queue. The delegate
execution consists of adding the service to the queue
of the corresponding aspect. Next, the aspect thread
executes the service (step 5, Figure 10). However, if
the service has weavings associated to it, before
executing step 5, the service is sent to the weaving
manager (step 4, Figure 10). The manager processes
weavings creating its own thread and freeing the
component from this task.

Figure 10. The execution model of a component

With regard to starting or stopping a component,
when the middleware calls the start service of a
component, the component calls the startAspect
service of each one of its aspects. On the other hand,
when the middleware calls the stop or abort services
of a component, the threads of its aspects must also
be stopped (stopAspect) or aborted (abortAspect). In
the case of stopping a component in a secure way
(stop service), a set of operations must be performed
in order to achieve a secure state that will permit the
start of the component execution in the future. A
component is in a secure state when it does not have
requests in its aspect queues and there are no
executing services. These operations consist of not
allowing anymore services in their queues and
processing every service that was stored in the queue
before the stop execution.

Adding and removing aspects at run-time
Aspects can be added to and removed from a
component at run-time. The addAspect service
inserts a new aspect inside a component. This
method verifies that the kind of aspect that is going
to be added does not already exist in the component,
since only one aspect of each kind can exist in a
component. The method updates the references of the
aspect to the component and middleware and adds
the aspect to the aspect list of the component.
Finally, dynamic code generation is used to update
the component constructor in order to make the
changes consistent. The removeAspect service
deletes an aspect from a component. First, the
method stops the aspect that is going to be removed
in a secure way. Second, it removes the aspect from
the aspect list of the component and its associated
weavings. Finally, the dynamic code generation is
used to update the changes.

Distribution Model and Mobility
PRISMANET supports the distributed
communication and the mobility of the components.
It provides the distributed communication among

components without making components aware of
each other.

3.5.1. Distributed Communication among
elements through Attachments
To make components as reusable as possible, they do
not have references to other components they
communicate with. Therefore, the components are
unaware of the components they communicate with.
The distributed communication among components
is the responsibility of attachments. Thus, an
attachment has the references of the communicating
components.
To support attachments, the middleware contains
three classes: the Attachment class, the
AttachmentServerBase class and the
AttachmentClientBase (see Figure 12). For each
component port, there is at least one instance of an
Attachment class. When a component instance is
created, the PRISMANET middleware creates the
instances of the attachments associated to each port.
Each PRISMA port has been implemented into two
queues, a client (outPort) and a server queue (inPort)
(see Figure 10), there also exists a Server Attachment
and a Client Attachment for each Attachment. An
instance of the Attachment class automatically
instantiates an AttachmentClientBase and an
AttachmentServerBase class.
An AttachmentClientBase instance has a thread that
listens to a specific outport of a component instance.
When the AttachmentClientBase instance detects that
there is a petition in the queue, the petition is
redirected to the instance of an
AttachmentServerBase. Thus, the
AttachmentClientBase instance has a reference or a
proxy of the AttachmentServerBase. The
AttachmetServerBase is a MarshalByRefObject class
of the .NET Remoting framework. This has been
necessary to create a proxy of the instance to allow
the AttachmentClientBase instance to access to it
remotely.

Figure 11. Two distributed architectural elements
connected by attachments

Middleware1

InterfaceX

OutPort

InPort

COMPONENT1

Attachment

Attachment
ClientBase

InterfaceXServer
Attachment
ServerBase

InterfaceY

OutPort

InPort

COMPONENT2

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

Middleware2Middleware1Middleware1

InterfaceX

OutPort

InPort

COMPONENT1

Attachment

Attachment
ClientBase

InterfaceX
Server

Attachment
ServerBase

InterfaceY

OutPort

InPort

COMPONENT2

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

Middleware2

InterfaceY

OutPort

InPort

CONNECTOR 1

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

InterfaceY

OutPort

InPort

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base Attachment
Server Base

Middleware2Middleware2

Figure 12. A logical view of the attachments in the middleware1

Figure 11, shows how two distributed components
are connected together. Component1 has an
AttachmentClientBase that listens to its Output queue
and redirects services to the AttachmentServerBase
of Component2. In addition, Component2 also has an
AttacmentClientBase that listens to its Output queue
and redirects the services to the
AttachmentServerBase. Each AttachmentClientBase
and AttachmentServerBase of a component are
associated by an Attachment.
The attachments are solely responsible for the
distributed communication of the components. The
PRISMANET middleware only participates in the
creation of attachments instances between its
component instances. To store the list of attachments
in its site, each middleware has an
AttachmentCollection class (see Figure 12).
The use of attachments approximation for distributed
communication does not only allow for the
reusability of the elements but also makes distributed
applications independent of a centralized Domain
Name Server (DNS). Thus, the attachments of a
component can be seen as a distributed DNS that
contains the necessary references that allow an
instance to perform the needed communications. Our
approach prevents the failures which may be

generated as a result of failures produced by a
centralized DNS such as load saturation and
deadlock. In addition, if a certain attachment between
two architectural elements fails, their communication
among others is not affected.

3.5.2. Mobility of the elements in PRISMA
Mobility is defined as the process of transferring a
component instance and its code to a new host. The
transferred component instance must continue
executing at the new host, while conserving its state
and maintaining the same execution point.
Current technologies do not offer this definition of
mobility nor does .NET. Therefore, the mobility has
to be simulated.
To implement the mobility, we have marked all
classes of components, aspects and the inPorts and
outPort queues of the component with the
[Serializable] attribute. The ability to serialize (to
pass them by value) is provided by the .NET
Framework. However, this is not enough. The
mobility process has to ensure that the instance is at a
consistent state before it is serialized. The steps to
enable a mobility process are presented in the
following section.

3.5.2.1. The execution of a mobility decision
A distribution aspect of a component encapsulates
the different decisions related to mobility. This
enables the reusability of the different mobility
decisions in different components. As a result, the
component controls the mobility decisions and even
if the environment wants to make a mobility
decision, it has to go through the distribution aspect
of a component.
Figure 13 shows an interaction diagram of part of the
mobility process performed at the site where the
mobility decision of a component has been executed.
It shows the interchange of messages until the
component instance is transferred to the
RemoteMiddleware.
When a mobility decision is satisfied, the distribution
aspect asynchronously calls the PRISMANET
middleware on its site to indicate that it is willing to
move (move, Figure 13). The distribution aspect also
notifies its component thread to prepare itself to be in
a secure state so that it can be serialized (by
executing the Stop of a Component, Figure 13). A
component is at a secure state when the queues of its
aspects are empty and when there is no service being
executed. Therefore, the component thread stops
processing services from its queue. However,
services can be queued in the component inport
because the queue is also serializable. In addition, the
component thread notifies the aspect threads to stop
when they finish processing services from their
queues and when they finish executing all the
services (StopAspect, Figure 13). When the
component and aspect threads finally stop, the
PRISMANET is notified and it is able to move the
component.

3.5.2.2. Preparing to Move Attachments
The attachments also have to be prepared for
mobility if a component is moved. This is because
the attachments are the communication channels that
allow others to communicate with a specific
component. Therefore, it is also important to involve
the attachments when a component is moved.
When a component instance is completely stopped,
PRISMANET executes a service called
PrepareToMoveAttachments (Figure 13). This
service fetches the attachments of a component by
going through its ports and finding the listeners to
these ports. It checks which attachments connect the
mobile component with distributed ones. The
information associated with each attachment is saved
in a structure called the AttachmentDataTransfer (see
Figure 12). The information contains the references
of the AttachmentServerBase instances that are
connected to the AttachmentClientBase instances of
the component. It also contains the name of the
component instance that is connected to the mobile
component instance, and others.
When this task is completed, the middleware stops
the thread of the AttachmentClientBase instances of
the component. In addition, the
AttachmentServerBase instances of the distributed
component instances, connected to the mobile
component instance, are unregistered from Remoting
by using the Disconnect(MarshalByRefObject)
service. This is previously performed in order not to
allow the transfer of services to and from the mobile
component object.

{for all the component aspects}

{for all attachments}

DistributionAspect ComponentThread AspectsThreads LOCALPRISMANET RemotePRISMANETAttachmentsCol lection

move

Stop

StopAspect

PrepareToMoveAttachments

TransferComponent

Remove()

Figure 13. A simple interaction diagram showing the tasks done by at the local middleware site of the

transferred component

Finally, a list with all the AttachmentDataTransfer
structures of a component is created. This is
necessary for the new middleware, where the
component is going to be transferred, to allow it to
recreate the attachments on its site.

3.5.2.3. Transferring component instances
When all the information for the mobility is
prepared, the component instance with InPorts and
OutPorts is serialized, and the list with the
information of the attachments is transferred to the
middleware of the new host. The transfer process is
performed in a try/catch block in order to recover
from any failure that may occur while making the
transfer (TransferComponent, Figure 13). When the
object is correctly serialized, the original component
object is destroyed.
In addition, the attachments associated with the
mobile component are removed from the list of
attachments that exist in the site of the current
middleware by executing the Remove() method of the
AttachmentsCollection (Remove, Figure 13).

3.5.2.4. Process after transferring a component
instance

When the component instance is moved, the
receiving middleware updates the list where it stores
the components that are executing on its site by
adding the component instance moved
(componentList.Add Figure 14).
Then the middleware uses the information stored in
AttachmentServerBase structure list in order to create
the Attachments of the component instance
(createLocalAttachment, see Figure 14). However,

this is not enough because the instances of the
AttachmentClientBase of other component instances
that are connected to the instances of the
AttachmentServerBase still have the old references or
proxies. Therefore, the new proxies of each
AttachmentServerBase of the component instance are
sent to the connected instances of the
AttachmentClientBase (sendNewLocationToCouple,
Figure 14). Afterwards, the thread of each
AttachmentClientBase of the component instance is
started as well as the thread of the component
instance.
As the inPorts have not been stopped while the
moved component instance was preparing itself to be
in a secure state and to be moved, the component
instance can start executing the services which where
queued at the first middleware and were not
processed.
In this way, a mobility approximation has been
implemented preserving the state of the object after
moving it.
Our approach clearly distinguishes between moving
an object and allowing remote calls to it. This can be
done thanks to the implementation of the
attachments. In .NET Remoting, instances cannot be
MarshalByRefObjects and serializable at the same
time. As well, even if a MarshalByRefObject is
serialized a proxy is created, and it is not the real
object that is transferred. Therefore, using
attachments the indirect reference remoting to
component instances is allowed as well as their
mobility.

{for each AttachmentDataTransfer}

PRISMANET Attachment Component

componentList.Add

sendNewLocationTo Couple

AttachmentStart

createLocalAttachment

startComponentInstance

Figure 14. An interaction diagram showing the tasks done by the new middleware site after the

component is transferred

4. RELATED WORKS
Currently, there is an increased interest in Aspect-
Oriented Programming (AOP) which is becoming a
widely used programming technique. AOP was
initially developed for Java environments through
AspectJ [Kic01] and is being transferred to other
platforms such as .NET by means of extensions.
However, the existing .NET approaches for
supporting AOP are still in an early phase.

AspectC#[Kim02] and SourceWeave.Net [Jac04]
support AOP in .NET having available the source
code of the base code, the aspects and the weavings.
These approaches propose joining the base code with
the aspects by specifying the weavings in an XML
file. Weave.Net [Laf03] and AspectDNG [Asp05]
also define the weavings through an XML file;
however, they only use the assemblies of the base
code, the aspects and weavings to join the code
without being available the source code. Loom.Net
[Sch02] is another .NET approach for supporting
AOP. It has a graphical interface that allows the
addition of defined aspects by means of reusable
code templates and allows the performance of
weavings.

The approaches mentioned above clearly separate the
base code, the aspects and the weavings in different
entities. However, none of them supports
mechanisms for dynamically adding or removing
aspects. The Rapier-Loom.Net [Sch03] approach
does allow dynamic addition and removal of aspects,
but it defines the weavings inside the aspects thereby
losing their reusability. SetPoint [Set05] also allows
for dynamic addition and removal of aspects. Its
weaving is based on the evaluation of logical
predicates in which the base code is marked with
meta-information that permits the evaluation of such
predicates. EOS [Raj03] is another dynamic
approach which is able to attach aspects at instance-
level by means of events.

None of the approaches mentioned above takes into
account the emerging relations that result from the
aggregation of various aspects at the same point of
the base code (joinpoint). However, JAsCo.Net
[Ver03] provides an expressive language that permits
the definition of relations among aspects. JAsCo.Net
integrates AOP and CBSD. It introduces the concept
of connectors for the weaving between the aspects
and the base code which allows for a high level of
aspect reusability. An inconvenience of this
approach is that the dynamic weaving of aspects to
the base code is referential but not inclusive. This
requires an execution platform to intercept the
application and insert it into the aspects at execution
time.

The principal disadvantage of these approaches is
that none of them integrates the needed properties at
the same time to allow the mobility, the reusability
and the evolution of aspect-oriented components.
These properties are the dynamic weaving, the join
of the base code and the aspects inside the same
entity and the reusability of aspects. Therefore, the
code mobility is limited because not all the properties
of the object code can be moved. However, PRISMA
defines a model that combines AOP and the dynamic
reconfiguration of the CBSD models. The aspects are
separately defined from the weavings and are highly
reusable. The components are formed from aspects
which are inclusively and can be dynamically
aggregated. In addition, PRISMA permits the
dynamic mobility of its components, and the concept
of base code does not exist, so the component is
solely formed by aspects. The implementation of the
PRISMA model in .NET permits the dynamic
addition and removal of aspects as well as the
dynamic modification of the weavings without
stopping the execution of the component.

5. CONCLUSIONS AND FURTHER
WORK
In this paper, an innovative middleware called
PRISMANET has been presented. This middleware
is based on PRISMA model and in this way, it allows
the implementation of complex, dynamic, distributed,
aspect-oriented and component-based software
systems using C# language. PRISMANET has been
developed with C# language using the standard
techniques that the framework provides, that is,
without extending the development platform. As a
result, PRISMANET can be executed in every
computer that has the .NET framework installed.
PRISMANET offers extra functionalities for the
.NET platform. It allows the execution of aspects, the
reconfiguration of software architectures (local and
distributed), the addition and removal of aspects
from components at run-time, mobility, etc. As
explained in the paper, these functionalities have
been implemented using .NET mechanisms such as
delegates, reflection, serialization, .NET Remoting
and dynamic code generation.
PRIMANET has also been tested in industrial case
studies such as the EFTCoR teleoperation system and
the TeachMover robot. We are now working on the
PRISMA model compiler in order to integrate the
PRISMA graphical interface and the middleware in a
CASE tool and to automatically generate code from
the graphical diagrams.

6. ACKNOWLEDGMENTS

This work has been funded by the Department of
Science and Technology (Spain) under the National
Program for Research, Development and Innovation,
DYNAMICA project TIC2003-07776-C02-02.
PRISMANET and industrial case studies
developments are funded by the Microsoft Research
Cambridge, “PRISMA: Model Compiler of Aspect-
oriented component-based software architectures”
Project [Pri05].

7. REFERENCES

[Aos05] Aspect-Oriented Software Development,

http://aosd.net
[Asp05] AspectDNG Project,

http://aspectdng.sourceforge.net/
[EFT02] EFTCoR Project: Friendly and Cost-

Effective Technology for Coating Removal. V
Programa Marco, Subprograma Growth, G3RD-
CT-2002-00794, 2002.

[Kic01] Kiczales, G., Hilsdale, E., Hugunin, J.,
Kersten, M., Palm, J. and Griswold, W.G., An
Overview of AspectJ. In ECOOP 2001,
(Budapest, Hungary, 2001), Springer-Verlag,
pp.327-355.

[Kim02] Kim, H. AspectC#: An AOSD
implementation for C#. MSc. Thesis, Comp.Sci,
Trinity College, Dublin, Dublin, 2002.

[Jac04] Jackson A., Clarke S., SourceWeave.NET:
Cross-Language Aspect-Oriented Programming.
In Proc. of Generative Programming and
Component Engineering (GPCE 2004).
Vancouver, Canada, 2004.

[Laf03] Lafferty D., Cahill V., Language-
Independent Aspect-Oriented Programming. In
Proc. of Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2003).
Anaheim, California, USA, 2003.

[Mic05] Microsoft .Net Remoting: A Technical
Overview,
http://msdn.microsoft.com/library/default.asp?url
=/library/en-/dndotnet/html/hawkremoting.asp

[Per03] Perez J., Ramos I., Jaén J., Letelier P.,
Navarro E. (2003a); “PRISMA: Towards Quality,
Aspect Oriented and Dynamic Software
Architectures”;. In proceedings of 3rd IEEE
International Conference on Quality Software
(QSIC 2003), Dallas, Texas, USA, November, ©
IEEE Computer Society Press ISBN 0-7695-
2015-4, pp. 59-66.

[PRI05] PRISMA, http://prisma.dsic.upv.es
[Raj03] Rajan, H., Sullivan, K., Eos: Instance-Level

Aspects for Integrated System Design. In the
proceedings of the 2003 Joint European Software

Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003), Helsinki,
Finland, September 2003.

[Rob03] Robinson S. et al. , Professional C# 2nd
Edition, Wrox Programmer to Programmer.
[Sch02] Schult, W. and Polze, A., Aspect-Oriented

Programming with C# and .NET. In 5th IEEE
International Symposium on Object-Oriented
Real-time Distributed Computing, (Washington,
DC, 2002), IEEE Computer Society Press,
pp.241-248.

[Sch03] Schult, W. and Polze, A., Speed vs. Memory
Usage – An Approach to Deal with Contrary
Aspects. In 2nd AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure
Software (ACP4IS) in AOSD 2003, (Boston,
Massachusetts, 2003).

[Set05]SetPoint! Project,
http://www.dc.uba.ar/people/proyinv/setpoint/

[Szy98] Szyperski C. , “Component software:
beyond object-oriented programming”, ACM
Press and Addison Wesley, New York, USA,
1998.

[Tea05] The TeachMover Robot,
http://www.questechzone.com/microbot/teachmo
ver.htm

[Ver03] Verspecht, D., Vanderperren, W., Suvee, D.
and Jonckers, V., JAsCo.NET: Capturing
Crosscutting Concerns in .NET Web Services. In
Proc. of Second Nordic Conference on Web
Services NCWS’03, Vaxjo, Sweden. In
“Mathematical modelling in Physics, Engineering
and Cognitive Sciences”, Vol. 8, November
2003.

